Intelligent Processing Equipment

Technical Applications


Intelligent processing equipment is manufacturing equipment that uses controllers and sensors to improve the efficiency of the manufacturing process. These sense the state of the tools and the parts and provide feedback to modify the fabrication instructions to meet the design.


NEMI is another such partnership. Intelligent processing equipment also contributes to harnessing information technology. It provides a specific and sophisticated application for research on software algorithms which combine material characteristics and sensor outputs with spatial and temporal definitions of finished parts. It also allows individual companies to take advantage of databases and networked systems for manufacturing, giving them greater access to information relevant to their products and production processes.


Intelligent processing equipment is an important contributor to job creation and economic growth because it is an important part of the new manufacturing infrastructure based on computer-controlled design and production equipment. Specifically, it allows improvements in aircraft production by allowing for variation in materials, tighter tolerances, and greater automation. It also makes partnerships more effective by allowing companies to use shared design and production data. PNGV is one such partnership--decreasing cost and increasing quality of clean cars would make them more economically competitive. By increasing the efficiency of the industrial base, intelligent processing equipment also helps U.S. national security by increasing the efficiency of the industrial base used for defense applications. Such equipment can efficiently produce equipment from new materials and in new shapes and to tolerances that might be different from those for commercial equipment without having to be specifically designed and constructed for the purpose.


Europe, Japan, and the United States are at overall parity with respect to shop floor level hardware. Japan is ahead in using computer numerical controls (CNCs) and flexible- manufacturing systems--particularly in smaller companies, indicating a significant depth of capability. Only 20 percent of small- to medium-size U.S. manufacturers use CNC technology, while 50 percent of comparable Japanese companies take advantage of CNC. Most of this technology is considered to be below the CIM level but, nevertheless, forms an important market strength and supports the development of upper-level CIM and CAD/CAM systems. At the highest technology levels for CNC, however, Japan is being challenged. ARPA and NIST are developing the next-generation controller that may be used in future CIM applications. European ESPRIT programs also have similar efforts underway to create their next generation controller.